Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Yonsei Medical Journal ; : 148-153, 2018.
Article in English | WPRIM | ID: wpr-742491

ABSTRACT

We investigated the prevalence and characteristics of variants of five lipolysis-related genes in Korean patients with very high triglycerides (TGs). Twenty-six patients with TG levels >885 mg/dL were selected from 13545 Korean subjects. Five candidate genes, LPL, APOC2, GPIHBP1, APOA5, and LMF1, were sequenced by targeted next-generation sequencing. Predictions of functional effects were performed and matched against public databases of variants. Ten rare variants of three genes were found in nine (34.6%) patients (three in LPL, four in APOA5, and three in LMF1). Five were novel and all variants were suspected of being disease-causing. Nine were heterozygous, and one (3.8%) had a homozygous rare variant of LPL. Six common variants of four genes were observed in 25 (96.2%) patients (one in LPL, one in GPIHBP1, two in APOA5, and two in LMF1). The c.G41T variant of GPIHBP1 and c.G533T variant of APOA5 were most frequent and found in 15 (57.7%) and 14 (53.8%) patients, respectively. Rare homozygous variants of the genes were very uncommon, while diverse rare heterozygous variants were commonly identified. Taken together, most study subjects may be manifesting the combined effects of rare heterozygous variants and common variants.


Subject(s)
Female , Humans , Male , Middle Aged , Apolipoprotein A-V , Asian People/genetics , Genetic Association Studies , Genetic Variation , Heterozygote , Lipolysis/genetics , Triglycerides/blood
2.
Rev. méd. Chile ; 138(7): 868-880, July 2010. tab
Article in Spanish | LILACS | ID: lil-567593

ABSTRACT

Triglyceride concentrations are an independent risk factor for coronary heart disease. Apolipoprotein A5 gene (APOA5) has an important role determining triglyceride metabolism and it is a potential cardiovascular risk. However the mechanisms for these actions are not well-known. Despite the different allelic frequency of its major polymorphisms in different populations, multiple studies have shown consistent associations between these variants and fasting triglycerides. Variations in the APOA5 gene have also been associated with postprandial triglycerides, as well as with different sizes of lipoproteins and other markers. Moreover, some of the APOA5 gene variants have been associated with ischemic heart disease, stroke, and carotid intima media thickness, although the references on this issue are scanty and contradictory. This may be due to the presence of gene-environment interactions that have been poorly studied until now. Among the few studies that have examined the infuence of environmental factors on possible genetic variations, the most important are those that contemplate possible gene-diet interactions. However, the evidence is still scarce and more research is required in the feld of nutrigenomics. To understand the impact of this gene on cardiovascular disease, we review the genetic functionality and variability of APOA5, its associations with intermediate and fnal phenotypes and gene-environment interactions detected.


Subject(s)
Humans , Apolipoproteins A/genetics , Cardiovascular Diseases/genetics , Polymorphism, Genetic/genetics , Apolipoproteins A/physiology , Hypertriglyceridemia/genetics , Phenotype , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL